EXISTENCE OF THREE SOLUTIONS TO A CLASS OF QUASILINEAR ELLIPTIC SYSTEMS INVOLVING THE (p1(x),… ,pn(x))-LAPLACIAN

+ 作者地址


0
  • 参考文献
  • 相关文章
  • 统计

[2] Li C;Tang CL .Three solutions for a class of quasilinear elliptic systems involving the (p, q)-Laplacian[J].Nonlinear Analysis: An International Multidisciplinary Journal,2008(10):3322-3329.

[3] Afrouzi GA;Heidarkhani S .Existence of three solutions for a class of Dirichlet quasilinear elliptic systems involving the (p(1), ..., p(n))-Laplacian[J].Nonlinear Analysis: An International Multidisciplinary Journal,2009(1):135-143.

[4] Afrouzi GA;Heidarkhani S .Three solutions for a Dirichlet boundary value problem involving the p-Laplacian[J].Nonlinear Analysis: An International Multidisciplinary Journal,2007(10):2281-2288.

[5] Jingjing Liu;XiayangShi .Existence of three solutions for a class of quasilinear elliptic systemsinvolving the (p(x), q(x))-Laplacian[J].Nonlinear Analysis: An International Multidisciplinary Journal,2009(1/2):550-557.

[7] Xiao-Xiao Zhao;Chun-Lei Tang .Resonance problems for.p;q/-Laplacian systems[J].Nonlinear Analysis: An International Multidisciplinary Journal,2010(2):1019-1030.

[8] Fan XL.;Zhang QH. .Existence of solutions for p(x)-Laplacian Dirichlet problem[J].Nonlinear Analysis: An International Multidisciplinary Journal,2003(8):1843-1852.

[9] Fan XL.;Zhao D. .On the spaces Lp(x)(Omega) and Wm, p(x)(Omega)[J].Journal of Mathematical Analysis and Applications,2001(2):424-446.

[10] Fan XL.;Zhao D.;Shen JS. .Sobolev embedding theorems for spaces W-k,p(x)(Omega)[J].Journal of Mathematical Analysis and Applications,2001(2):749-760.

[11] Fan XL;Deng SG .Remarks on Ricceri's variational principle and applications to the p(x)-Laplacian equations[J].Nonlinear Analysis: An International Multidisciplinary Journal,2007(11):3064-3075.

[12] Ricceri, B .A three critical points theorem revisited[J].Nonlinear Analysis,2009(9):3084-3089.


语种: 英文   

基金This research was supported by National Natural Science Fo...


期刊热词
  • + 更多
  • 字体大小