H ¨older Estimate of Harmonic Functions on a Class of p.c.f. Self-Similar Sets

Donglei Tang,Rui Hu 已出版文章查询
Donglei Tang,Rui Hu
本平台内已出版文章查询
1 Chunwei Pan 已出版文章查询
Chunwei Pan
本平台内已出版文章查询
1

+ 作者地址

1Department of Applied Mathematics, Nanjing Audit University, Nanjing 210029, China


0
  • 摘要
  • 参考文献
  • 相关文章
  • 统计
In this paper we establish sharp H ¨older estimates of harmonic functions on a class of connected post critically finite (p.c.f.) self-similar sets, and show that functions in the domain of Laplacian enjoy the same property. Some well-known examples, such as the Sierpinski gasket, the unit interval, the level 3 Sierpinski gasket, the hexagasket, the 3-dimensional Sierpinski gasket, and the Vicsek set are also considered.

[1] J. Azzam;M. A. Hall;R. S. Strichartz .Conformal energy confrmal Laplacian and energy measures on the Sierpinski gasket[J].Trans Amer Math Soc,2008,360(04):2089-2130.

[2] M. Barlow.Diffusion on Fractals[A].Springer-Verlag,1998

[3] K. Falconer.Fractal Geometry, Mathematical Foundation and Application[M].Wiley,1990

[4] P. J. Fitzsimmons;B. M. Hambly;T. Kumagai .Transition density estimates for Brownian motion on affine nested fractals[J].Communacations in Mathematical Physics,1994,165:595-620.

[5] J. Hajnal .Weak ergodicity in non-homogeneous Markov chain[J].Proceedings of the Cambridge Philosophical Society,1958,54:233-246.

[6] LAU Ka-Sing,NGAI Sze-Man.Martin boundary and exit space on the Sierpinski gasket[J].中国科学:数学(英文版),2012(03):475-494.

[7] J. Kigami .A harmonic calculas on the Sierpinski spaces[J].Japan J Appl Math,1989,8:259-290.

[8] J. Kigami .Harmonic calculas on p c.f.self-similar sets[J].Trans Amer Math Soc,1993,335:721-755.

[9] J. Kigami.Analysis on Fractals[M].Cambridge University Press,2001

[10] T. Kumagai .Estimates of transition density for Brownian motion on nested fractals[J].Probab Theory Related Fields,1993,96:205-224.

[11] Chunwei Pan .Bachelor ’s thesis[D].

[12] Strichartz RS. .Taylor approximations on Sierpinski gasket type fractals[J].Journal of Functional Analysis,2000(1):76-127.

[13] Strichartz RS. .Function spaces on fractals[J].Journal of Functional Analysis,2003(1):43-83.

[14] R. S. Strichartz.Differential Equations on Fractals:A Tutorial[M].Princeton:Princeton University Press,2006

[15] Teplyaev A. .Gradients on fractals[J].Journal of Functional Analysis,2000(1):128-154.


DOI: http://dx.doi.org/10.4208/ata.2014.v30.n3.6

语种: 英文   


期刊热词
  • + 更多
  • 字体大小