内模强化学习型模型预测控制及其在人工胰脏上的应用

杨跃男 已出版文章查询
杨跃男
本平台内已出版文章查询
2010000836@grad.buct.edu.cn
1 王友清 已出版文章查询
王友清
本平台内已出版文章查询
wang_youqing@mail.buct.edu.cn
1

+ 作者地址

1北京化工大学信息科学与技术学院,北京100029


0
  • 摘要
  • 参考文献
  • 相关文章
  • 统计
在学习型模型预测控制的框架里,迭代学习控制器被用来更新模型预测控制器的设定点.在已经发表的研究成果里,学习型模型预测控制用到的是比例型的学习率,这种学习率的学习能力有限,而且怎样设计学习增益仍然是一个开放性问题.在本文中,基于内模控制理论提出的PID型的迭代学习控制器被用来更新模型预测控制器的设定点.为了方便起见,本文提出的结合算法可称为内模强化学习型模型预测控制.本文提出的算法应用在(1)型糖尿病人的人工胰脏闭环控制上.仿真结果显示,本算法对比于比例学习型模型预测控制可以达到更好的收敛性能,而且对非重复干扰有很好的鲁棒性.

[1] UCHIYAMA M .Formation of high speed motion pattern of mechanical arm by trial[J].Transactions of the Society of Instrumentation and Control Engineers,1978,14(06):706-712.

[2] ARIMOTO S;KAWAMURA S;MIYAZAKI F .Bettering operation of robots by learning[J].Journal of Robot Systems,1984,1(02):123-140.

[3] CHEN Y;MOORE K;LIU J.Iterative learning control and repetitive control in hard disk drive industry-a tutorial[A].New York:IEEE Press,2006:2338-2351.

[4] HOU Z;XU J .Freeway traffic density control using iterative learning approach[J].Proceedings of the IEEE Intelligent Transportation Systems,2003,2(02):1081-1086.

[5] Zhongsheng HOU,Jianxin XU.Iterative learning control approach for ramp metering[J].控制理论与应用(英文版),2005(01):27-34.

[6] Jay H. Lee;Kwang S. Lee .Iterative learning control applied to batch processes: An overview[J].Control engineering practice,2007(10):1306-1318.

[7] Ruan X.;Zenn Bien Z.;Park K.-H. .Decentralized Iterative Learning Control to Large-Scale Industrial Processes for Nonrepetitive Trajectory Tracking[J].IEEE transactions on systems, man, and cybernetics, Part A. Systems and humans: A publication of the IEEE Systems, Man, and Cybernetics Society,2008(1):238-252.

[8] 晏静文,侯忠生.学习增强型PID控制系统的收敛性分析[J].控制理论与应用,2010(06):761-768.

[9] Mingxuan Sun;Danwei Wang .Anticipatory iterative learning control for nonlinear systems with arbitrary relative degree[J].IEEE Transactions on Automatic Control,2001(5):783-788.

[10] Wang, YQ;Gao, FR;Doyle, FJ .Survey on iterative learning control, repetitive control, and run-to-run control[J].Journal of Process Control,2009(10):1589-1600.

[11] K.K. Tan;S. Zhao;J.-X. Xu .Online automatic tuning of a proportional integral derivative controller based on an iterative learning control approach[J].IET control theory & applications,2007(1):90-96.

[12] WU J;DING H .Reference adjustment for a high-acceleration and high-precision platform via A-type of iterative learning control[J].Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering,2007,221(05):781-789.

[13] WANG Y;DOYLE Ⅲ F J.Indirect iterative learning control:application on artificial pancreatic beta-cell[A].Guilin,China:IEEE,2009:1728-1733.

[14] RIVERA D;MORARI M;SKOGESTAD S .Internal model control.4.PID controller design[J].Industrial and Engineering Chemistry Research,1986,25(01):252-265.

[15] Ibrahima Kaya .IMC based automatic tuning method for PID controllers in a Smith predictor configuration[J].Computers & Chemical Engineering,2004(3):281-290.

[16] Roman Hovorka;Valentina Canonico;Ludovic J Chassin;Ulrich Haueter;Massimo Massi-Benedetti;Marco Orsini Federici;Thomas R Pieber;Helga C Schaller;Lukas Schaupp;Thomas Vering .Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes[J].Physiological measurement,2004(4):905-920.

[17] Wilinska M.E.;Chassin L.J.;Schaller H.C.;Schaupp L.;Pieber T.R.;Hovorka R. .Insulin kinetics in type-1 diabetes: continuous and bolus delivery of rapid acting insulin[J].IEEE Transactions on Biomedical Engineering,2005(1):3-12.

[18] RICHALET J .Industrial application of model based predictive control[J].Automatica,1993,29(05):1251-1274.

[19] MICHAEL A .Nonlinear model predictive control:current status and future directions[J].Computers and Chemical Engineering,1998,23(02):187-202.

[20] CAMACHO E;BORDONS C.Model Predictive Control in the Process Industry[M].London:Springer-Verlag London Limited,1995

[21] Youqing Wang;Howard Zisser;Eyal Dassau .Model Predictive Control with Learning-Type Set-Point: Application to Artificial Pancreatic β-Cell[J].AIChE Journal,2010(6):1510-1518.

[22] TAO Y.New PID Control and It Is Applied[M].Beijing:Machine Industry Publisher,2002


语种: 中文   

基金The National Natural Science Foundation of China(61074081)

关键词迭代学习控制 模型预测控制 间接型迭代学习控制 内模控制 人工胰脏 1型糖尿病


期刊热词
  • + 更多
  • 字体大小